您的当前位置:首页正文

3工程力学材料力学答案

2020-01-20 来源:爱够旅游网
3-1 已知梁AB上作用一力偶,力偶矩为M,梁长为l,梁重不计。求在图a,b,c三种情

况下,支座A和B的约束力

M M l/2 l/3

B B

l l

l/2 (a) M B θ l (b)

(c)

解:(a) 受力分析,画受力图;A、B处的约束力组成一个力偶; M l/2

列平衡方程:

FA l B FB

M0 FBlM0 FBMlMl

FAFB(b) 受力分析,画受力图;A、B处的约束力组成一个力偶;

M l/3

B l FA FB

列平衡方程:

M0 FBlM0 FBMlMl

FAFB (c) 受力分析,画受力图;A、B处的约束力组成一个力偶; M l/2 FA

B

θ l FB

列平衡方程:

M0 FBlcosM0 FBMlcosMlcos

FAFB3-2 在题图所示结构中二曲杆自重不计,曲杆AB上作用有主动力偶,其力偶矩为M,试求

A和C点处的约束力。

a

A 3a B a Ma

解:(1) 取BC为研究对象,受力分析,BC为二力杆,画受力图; F

B

B C FC

FBFC

(2) 取AB为研究对象,受力分析,A、B的约束力组成一个力偶,画受力图;

B

FA A M22aMaF’B MM0 22FB3aaM0 FBMa''0.354

FAFC0.3543-3 齿轮箱的两个轴上作用的力偶如题图所示,它们的力偶矩的大小分别为M1=500 Nm,M2 =125 Nm。求两螺栓处的铅垂约束力。图中长度单位为cm。

A M1 2 B FA FB 50

解:(1) 取整体为研究对象,受力分析,A、B的约束力组成一个力偶,画受力图;

(2) 列平衡方程:

M0 FBlM1M20 FBM1M2l50012550750 N

FAFB750 N3-5 四连杆机构在图示位置平衡。已知OA=60cm,BC=40cm,作用BC上的力偶的力偶矩

大小为M2=1N.m,试求作用在OA上力偶的力偶矩大小M1和AB所受的力FAB所受的力。各杆重量不计。

O M1 A C 30o B

M2 解:(1) 研究BC杆,受力分析,画受力图:

列平衡方程:

30 oB FC C M2 FB

MFB0 FBBCsin30M20M2BCsin30oo10.4sin30o

5 N(2) 研究AB(二力杆),受力如图:

可知:

FAFBFB5 N

''F’A A B F’B (3) 研究OA杆,受力分析,画受力图:

列平衡方程:

FO A FA

M1 O M0 FAOAM10

 M1FAOA50.63 Nm3-7 O1和O 2圆盘与水平轴AB固连,O1盘垂直z轴,O2盘垂直x轴,盘面上分别作用力偶

(F1,F’1),(F2,F’2)如题图所示。如两半径为r=20 cm, F1 =3 N, F2 =5 N,AB=80 cm,不计构件自重,试计算轴承A和B的约束力。 z

FAz A FAx

x F2 O O2 FBx F1 F’1 O1 FBz B y

F’2

解:(1) 取整体为研究对象,受力分析,A、B处x方向和y方向的约束力分别组成力偶,画

受力图。

(2) 列平衡方程:

MFBzx0 FBzABF22r0AB2205802.5 N FAzFBz2.5 N2rF2MFBx

z0 FBxABF12r02rF1AB22038021.5 N FAxFBx1.5 NAB的约束力:

FAFAxFAz21.522.58.5 N2

FBFA8.5 N3-8 在图示结构中,各构件的自重都不计,在构件BC上作用一力偶矩为M的力偶,各尺寸

如图。求支座A的约束力。 MD C

l B A l l l

解:(1) 取BC为研究对象,受力分析,画受力图; FC M

C B FB Ml

画封闭的力三角形;

解得

M0 FClM0 FC

(2) 取DAC为研究对象,受力分析,画受力图;

D FD A FA C F’C

FD

FA F’C

FAFCcos45o'2Ml

因篇幅问题不能全部显示,请点此查看更多更全内容