第一章 单向静拉伸力学性能
1、 解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。
8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变
12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等
2、 说明下列力学性能指标的意义。
答:E弹性模量 G切变模量 r规定残余伸长应力 0.2屈服强度 gt金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数
σr——规定残余伸长应力,试样卸除拉伸力后,其标距部分的残余伸长达到规定的原始标距百分比时的应力。表征材料对微量塑性变形的抗力。强度指标σ0.2:表示规定残余伸长率为0.2%时的应力。强度指标 σs——材料的屈服强度,用应力表示材料的屈服点或下屈服点,表征材料对微量塑性变形的抗力,强度指标
σb——抗拉强度,即金属试样拉断过程中最大力所对应的应力,表征金属材料所能承受的最大拉伸应力。 n——应变硬化指数,反映了金属材料抵抗均匀塑性变形的能力,是表征金属材料应变硬化行为的性能指标。其值为0—1,当n=1时,表示材料为完全理想的弹性体;当n=0时,表示材料没有应变硬化能力;大多数金属材料的n值在0.1—0.5之间。强度指标
δ——断后延伸率,金属试样拉断后标距的伸长与原始标距的百分比,表征金属材料断裂前发生塑性变形的能力。塑性指标
δgt——最大应力下的总伸长率,指试样拉伸到最大应力时标距的总伸长与原始标距的百分比。表征金属材料拉伸时产生的最大均匀塑性变形(工程应变)量。塑性指标
ψ——断面收缩率,即试样拉断后,缩颈处横截面的最大缩减量与原始横截面积的百分比。
3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?
答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】
4、 今有45、40Cr、35CrMo钢和灰铸铁几种材料,应选择哪种材料作为机床机身?并说明原因?
答:因为机床机身要求刚度大,抗振性能好,运行可靠(缺口敏感性小)且耐磨性好。在 以上四种材料中,只有灰铸铁满足以上要求,而且价格便宜,也具有良好的铸造性能,为制备精密机床创造了条件。
5、 试述多晶体金属产生明显屈服的条件,并解释BCC金属及其合金与FCC金属及其合金屈服行为不同的
原因?
答:考虑条件:1)材料变形前可动位错密度很小2)塑性变形发生时位错能快速增殖3)位错运动速率与外加应力有强烈依存关系 较高的外应力作用,沿滑移面上的切应力提高,一旦塑性变形产生,位错大量增殖,可移动位错密度增加,则位错运动速率下降,相应的应力也就突然降低,从而产生了明显的
屈服现象。在关系式 0m vττ⎛⎛=⎛⎛ ⎛⎛,其中m’为位错运动速率应力敏感系数,m’值越低,则为使位错运动速率变化所需的应力变化越大,屈服现象就越明显;反之,屈服现象就越不明显。 BCC金属的滑移系较多,晶格阻力较大,可动位错密度较小,位错能快速增值较大,体现m’值较低,小于20,故具有明显屈服现象;而FCC金属的滑移系较少,晶格阻力较小,可动位错密度较大,位错能快速增值较少,体现在m’值大于100~200,故屈服不明显。
6、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么?
答:由于含碳量不同,碳的固溶强化、组织不同,退火低、中、高碳钢的分别为铁素体+珠光体、珠光体、珠光体+渗碳体(复杂单斜),低碳钢的屈服现象明显,屈服平台呈锯齿状;中碳钢有明显的屈服平台,有上下屈服点;高碳钢屈服平台较短,无上下屈服点 7、 决定金属屈服强度的因素有哪些?【P12】
答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。
外在因素:温度、应变速率和应力状态。
8、 试述δ、ψ两种塑性指标评定金属材料塑性的优缺点?
答:对于在单一拉伸条件下工作的长形零件,无论其是否产生缩颈,用δ来评定材料的塑性,因为产生缩颈时局部区域的塑性变形量对总伸长实际上没有什么影响。如果金属材料机件是非长形件,在拉伸时形成缩颈,则用φ作为塑性指标。因为φ反映了材料断开前的最大塑性变形量,而此时δ则不能显示材料的最大塑性。Φ是在复杂应力状态下形成的,冶金因素的变化对材料的塑性的影响在φ上更为突出,所以φ比δ对组织变化更为敏感。
9、 试写出几种能显著强化金属但又不会降低其塑性的方法。
答:①细化晶粒强化金属;②第二相以弥散形式均匀强化。
10、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】
答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。
11、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】
答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 12、 在什么条件下易出现沿晶断裂?怎样才能减小沿晶断裂的倾向?
答:沿晶断裂是由晶界上的一薄层连续或不连续脆性第二相、夹杂物,破坏了晶界的连续性所造成的,也可能是杂质元素向晶界偏聚引起的。减小应力腐蚀、氢脆以及回火脆性等缺陷都可以减小沿晶断裂
的倾向。
13、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些?
答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。
14、 板材宏观断口的主要特征是什么?如何寻找断裂源?
答:板状矩形拉伸试样断口中呈人字纹花样。根据人字纹花样的放射方向,顺着尖顶指向可以找到裂纹源。
15、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。【P32】
答: c2Esa12,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。
16、 断裂强度ζc与抗拉强度ζb有何区别?
答:板状矩形拉伸试样断口中呈人字纹花样。根据人字纹花样的放射方向,顺着尖顶指向可以找到裂纹源。 17、 有哪些因素决定韧性断口的宏观形貌?
答:韧性断口的宏观形貌决定于第二相质点的大小和密度、基体材料的塑性变形能力和应变硬化指数,以及外加应力的大小和状态等。
第二章 金属在其他静载荷下的力学性能
一、解释下列名词:
(1)应力状态软性系数—— 材料或工件所承受的最大切应力τmax和最大正应力σmax比值,即:
max13
max210.523 【新书P39 旧书P46】
(2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】
(3)缺口敏感度——缺口试样的抗拉强度σbn的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即:
【P47 P55 】
(4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】
(5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51 P60】。 (6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承受的试验力计算而得的硬度。【P53 P62】
(7)努氏硬度——采用两个对面角不等的四棱锥金刚石压头,由试验力除以压痕投影面积得到的硬度。 (8)肖氏硬度——采动载荷试验法,根据重锤回跳高度表证的金属硬度。 (9)里氏硬度——采动载荷试验法,根据重锤回跳速度表证的金属硬度。 二、说明下列力学性能指标的意义
(1)σbc——材料的抗压强度【P41 P48】 (2)σbb——材料的抗弯强度【P42 P50】 (3)τs——材料的扭转屈服点【P44 P52】 (4)τb——材料的抗扭强度【P44 P52】 (5)σbn——材料的抗拉强度【P47 P55】
(6)NSR——材料的缺口敏感度【P47 P55】
(7)HBW——压头为硬质合金球的材料的布氏硬度【P49 P58】 (8)HRA——材料的洛氏硬度【P52 P61】 (9)HRB——材料的洛氏硬度【P52 P61】 (10)HRC——材料的洛氏硬度【P52 P61】 (11)HV——材料的维氏硬度【P53 P62】
三、试综合比较单向拉伸、压缩、弯曲及扭转试验的特点和应用范围。 试验方法 特点 温度、应力状态和加载速率确定,采用拉伸 光滑圆柱试样,试验简单,应力状态软性系数较硬。 应力状态软,一般都能产生塑性变形,压缩 试样常沿与轴线呈45º方向产生断裂,具有切断特征。 弯曲试样形状简单,操作方便;不存在拉伸试验时试样轴线与力偏斜问题,没有附加应弯曲 力影响试验结果,可用试样弯曲挠度显示材料的塑性;弯曲试样表面应力最大,可灵敏地反映材料表面缺陷。 应用范围 塑性变形抗力和切断强度较低的塑性材料。 脆性材料,以观察脆性材料在韧性状态下所表现的力学行为。 测定铸铁、铸造合金、工具钢及硬质合金等脆性与低塑性材料的强度和显示塑性的差别。也常用于比较和鉴别渗碳和表面淬火等化学热处理机件的质量和性能。 扭转 应力状态软性系数为0.8,比拉伸时大, 用来研究金属在热加工条件下的流易于显示金属的塑性行为;试样在整个长度上的变性能和断裂性能,评定材料的热压力加工塑性变形时均匀,没有紧缩现象,能实现大塑性型,并未确定生产条件下的热加工工艺参数变形量下的试验;较能敏感地反映出金属表面缺提供依据;研究或检验热处理工件的表面质陷和及表面硬化层的性能;试样所承受的最大正量和各种表面强化工艺的效果。 应力与最大切应力大体相等 四.试述脆性材料弯曲试验的特点及其应用。
五、缺口试样拉伸时的应力分布有何特点?【P45 P53】
在弹性状态下的应力分布:薄板:在缺口根部处于单向拉应力状态,在板中心部位处于两向拉伸平面应力状态。厚板:在缺口根部处于两向拉应力状态,缺口内侧处三向拉伸平面应变状态。
无论脆性材料或塑性材料,都因机件上的缺口造成两向或三向应力状态和应力集中而产生脆性倾向,降低了机件的使用安全性。为了评定不同金属材料的缺口变脆倾向,必须采用缺口试样进行静载力学性能试验。 六、试综合比较光滑试样轴向拉伸、缺口试样轴向拉伸和偏斜拉伸试验的特点。
偏斜拉伸试验:在拉伸试验时在试样与试验机夹头之间放一垫圈,使试样的轴线与拉伸力形成一定角度进行拉伸。该试验用于检测螺栓一类机件的安全使用性能。
光滑试样轴向拉伸试验:截面上无应力集中现象,应力分布均匀,仅在颈缩时发生应力状态改变。 缺口试样轴向拉伸试验:缺口截面上出现应力集中现象,应力分布不均,应力状态发生变化,产生两向或三向拉应力状态,致使材料的应力状态软性系数降低,脆性增大。
偏斜拉伸试验:试样同时承受拉伸和弯曲载荷的复合作用,其应力状态更“硬”,缺口截面上的应力分布更不均匀,更能显示材料对缺口的敏感性。
七、试说明布氏硬度、洛氏硬度与维氏硬度的实验原理,并比较布氏、洛氏与维氏硬度试验方法的优缺点。【P49 P57】 原理
布氏硬度:用钢球或硬质合金球作为压头,计算单位面积所承受的试验力。 洛氏硬度:采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度。
维氏硬度:以两相对面夹角为136。的金刚石四棱锥作压头,计算单位面积所承受的试验力。
布氏硬度优点:实验时一般采用直径较大的压头球,因而所得的压痕面积比较大。压痕大的一个优点是其硬度值能反映金属在较大范围内各组成相得平均性能;另一个优点是实验数据稳定,重复性强。缺点:对不同材料需更换不同直径的压头球和改变试验力,压痕直径的测量也较麻烦,因而用于自动检测时受到限制。
洛氏硬度优点:操作简便,迅捷,硬度值可直接读出;压痕较小,可在工件上进行试验;采用不同标尺可测量各种软硬不同的金属和厚薄不一的试样的硬度,因而广泛用于热处理质量检测。缺点:压痕较小,代表性差;若材料中有偏析及组织不均匀等缺陷,则所测硬度值重复性差,分散度大;此外用不同标尺测得的硬度值彼此没有联系,不能直接比较。
维氏硬度优点:不存在布氏硬度试验时要求试验力F与压头直径D之间所规定条件的约束,也不存在洛氏硬度试验时不同标尺的硬度值无法统一的弊端;维氏硬度试验时不仅试验力可以任意取,而且压痕测量的精度较高,硬度值较为准确。缺点是硬度值需要通过测量压痕对角线长度后才能进行计算或查表,因此,工作效率比洛氏硬度法低的多。
八.今有如下零件和材料需要测定硬度,试说明选择何种硬度实验方法为宜。
(1)渗碳层的硬度分布;(2)淬火钢;(3)灰铸铁;(4)鉴别钢中的隐晶马氏体和残余奥氏体;(5)仪表小黄铜齿轮;(6)龙门刨床导轨;(7)渗氮层;(8)高速钢刀具;(9)退火态低碳钢;(10)硬质合金。
(1)渗碳层的硬度分布---- HK或-显微HV (2)淬火钢-----HRC (3)灰铸铁-----HB
(4)鉴别钢中的隐晶马氏体和残余奥氏体-----显微HV或者HK (5)仪表小黄铜齿轮-----HV
(6)龙门刨床导轨-----HS(肖氏硬度)或HL(里氏硬度) (7)渗氮层-----HV (8)高速钢刀具-----HRC (9)退火态低碳钢-----HB (10)硬质合金----- HRA
第三章 金属在冲击载荷下的力学性能
冲击韧性:材料在冲击载荷作用下吸收塑性变形功和断裂功的能力。【P57】 冲击韧度: :U形缺口冲击吸收功
AKU除以冲击试样缺口底部截面积所得之商,称为冲击韧度,
αku=Aku/S (J/cm2), 反应了材料抵抗冲击载荷的能力,用aKU表示。P57注释/P67
冲击吸收功: 缺口试样冲击弯曲试验中,摆锤冲断试样失去的位能为mgH1-mgH2。此即为试样变形和断裂所消耗的功,称为冲击吸收功,以
AK表示,单位为J。P57/P67
低温脆性: 体心立方晶体金属及合金或某些密排六方晶体金属及其合金,特别是工程上常用的中、低强度结构钢(铁素体-珠光体钢),在试验温度低于某一温度tk时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集型变为穿晶解理型,断口特征由纤维状变为结晶状,这就是低温脆性。
韧性温度储备:材料使用温度和韧脆转变温度的差值,保证材料的低温服役行为。 二、(1)
AK:冲击吸收功。含义见上面。冲击吸收功不能真正代表材料的韧脆程度,但由于它们对材
料内部组织变化十分敏感,而且冲击弯曲试验方法简便易行,被广泛采用。
AKV (CVN):V型缺口试样冲击吸收功. AKU:U型缺口冲击吸收功.
(2)FATT50:冲击试样断口分为纤维区、放射区(结晶区)与剪切唇三部分,在不同试验温度下,三个
区之间的相对面积不同。温度下降,纤维区面积突然减少,结晶区面积突然增大,材料由韧变脆。通常取结晶区面积占整个断口面积50%时的温度为tk,并记为50%FATT,或FATT50%,t50。(新书P61,旧书P71) 或:结晶区占整个断口面积50%是的温度定义的韧脆转变温度.
(3)NDT: 以低阶能开始上升的温度定义的韧脆转变温度,称为无塑性或零塑性转变温度。 (4)FTE: 以低阶能和高阶能平均值对应的温度定义tk,记为FTE (5)FTP: 以高阶能对应的温度为tk,记为FTP
三、试现需检验以下材料的冲击韧性,问哪种材料要开缺口?哪种材料不要开缺口? W18Cr4V,Cr12MoV,3Cr2W8V,40CrNiMo,30CrMnSi,20CrMnTi,铸铁。 需要开缺口的试样:40CrNiMo ,30CrMnSi ,20CrMnTi 不需要开缺口的试样:W18Cr4V ,Cr12MoV ,3Cr2W8V ,铸铁 四、试说明低温脆性的物理本质及其影响因素
低温脆性的物理本质:宏观上对于那些有低温脆性现象的材料,它们的屈服强度会随温度的降低急剧增加,而断裂强度随温度的降低而变化不大。当温度降低到某一温度时,屈服强度增大到高于断裂强度时,在这个温度以下材料的屈服强度比断裂强度大,因此材料在受力时还未发生屈服便断裂了,材料显示脆性。 从微观机制来看低温脆性与位错在晶体点阵中运动的阻力有关,当温度降低时,位错运动阻力增大,原子热激活能力下降,因此材料屈服强度增加。 影响材料低温脆性的因素有(P63,P73):
1.晶体结构:对称性低的体心立方以及密排六方金属、合金转变温度高,材料脆性断裂趋势明显,塑性差。 2.化学成分:能够使材料硬度,强度提高的杂质或者合金元素都会引起材料塑性和韧性变差,材料脆性提高。
3.显微组织:①晶粒大小,细化晶粒可以同时提高材料的强度和塑韧性。因为
晶界是裂纹扩展的阻力,晶粒细小,晶界总面积增加,晶界处塞积的位错数减 少,有利于降低应力集中;同时晶界上杂质浓度减少,避免产生沿晶脆性断裂。 ②金相组织:较低强度水平时强度相等而组织不同的钢,冲击吸收功和韧脆转变温度以马氏体高温回火最佳,贝氏体回火组织次之,片状珠光体组织最差。钢中夹杂物、碳化物等第二相质点对钢的脆性有重要影响,当其尺寸增大时均使材料韧性下降,韧脆转变温度升高。
五. 试述焊接船舶比铆接船舶容易发生脆性破坏的原因。
焊接容易在焊缝处形成粗大金相组织气孔、夹渣、未熔合、未焊透、错边、咬边等缺陷,增加裂纹敏感度,增加材料的脆性,容易发生脆性断裂。
七. 试从宏观上和微观上解释为什么有些材料有明显的韧脆转变温度,而另外一些材料则没有?
宏观上,体心立方中、低强度结构钢随温度的降低冲击功急剧下降,具有明显的韧脆转变温度。而高强度结构钢在很宽的温度范围内,冲击功都很低,没有明显的韧脆转变温度。面心立方金属及其合金一般没有韧脆转变现象。
微观上,体心立方金属中位错运动的阻力对温度变化非常敏感,位错运动阻力随温度下降而增加,在低温下,该材料处于脆性状态。而面心立方金属因位错宽度比较大,对温度不敏感,故一般不显示低温脆性。
体心立方金属的低温脆性还可能与迟屈服现象有关,对低碳钢施加一高速到高于屈服强度时,材料并不立即产生屈服,而需要经过一段孕育期(称为迟屈时间)才开始塑性变形,这种现象称为迟屈服现象。由于材料在孕育期中只产生弹性变形,没有塑性变形消耗能量,所以有利于裂纹扩展,往往表现为脆性破
坏。
八. 简述根据韧脆转变温度分析机件脆断失效的优缺点。
第四章 金属的断裂韧度
1、名词解释
低应力脆断:高强度、超高强度钢的机件 ,中低强度钢的大型、重型机件在屈服应力以下发生的断裂。 张开型(型)裂纹: 拉应力垂直作用于裂纹扩展面,裂纹沿作用力方向张开,沿裂纹面扩展的裂纹。 应力场强度因子K : 在裂纹尖端区域各点的应力分量除了决定于位置外,尚与强度因子K有关,对于某一确定的点,其应力分量由K确定, K越大,则应力场各点应力分量也越大,这样K就可以表示应力场的强弱程度,称K为应力场强度因子。 “I”表示I型裂纹。【P68】
小范围屈服: 塑性区的尺寸较裂纹尺寸及净截面尺寸为小时(小一个数量级以上),这就称为小范围屈服。【P71】
有效屈服应力:裂纹在发生屈服时的应力。【新书P73:旧P85】
有效裂纹长度:因裂纹尖端应力的分布特性,裂尖前沿产生有塑性屈服区,屈服区内松弛的应力将叠加至屈服区之外,从而使屈服区之外的应力增加,其效果相当于因裂纹长度增加ry后对裂纹尖端应力场的影响,经修正后的裂纹长度即为有效裂纹长度: a+ry。【新P74;旧P86】。 裂纹扩展K判据:裂纹在受力时只要满足 KIKIC,就会发生脆性断裂.反之,即使存在裂纹,若
KIKIC也不会断裂。新P71:旧83
裂纹扩展能量释放率GI:I型裂纹扩展单位面积时系统释放势能的数值。P76/P88 裂纹扩展G判据: GIGIC,当GI满足上述条件时裂纹失稳扩展断裂。P77/P89
J积分:有两种定义或表达式:一是线积分:二是形变功率差。P89/P101 裂纹扩展J判据: JIJIC,只要满足上述条件,裂纹(或构件)就会断裂。
COD:裂纹张开位移。P91/P102 COD判据:c,当满足上述条件时,裂纹开始扩展。P91/P103
2、说明下列断裂韧度指标的意义及其相互关系
KC和KC 答: 临界或失稳状态的K记作KC或KC,KC为平面应变下的断裂韧度,表示在平面应变条件下材料抵抗裂纹失稳扩展的能力。KC为平面应力断裂韧度,表示在平面应力条件下材料抵抗裂纹失稳扩展的能力。 它们都是型裂纹的材料裂纹韧性指标,但KC值与试样厚度有关。当试样厚度增加,使裂纹尖端达到平面应变状态时,断裂韧度趋于一稳定的最低值,即为KC,它与试样厚度无关,而
是真正的材料常数。P71/P82
GC 答:P77/P89 当G增加到某一临界值时,G能克服裂纹失稳扩展的阻力,则裂纹失稳扩展断裂。将G的临界值记作Gc,称断裂韧度,表示材料阻止裂纹失稳扩展时单位面积所消耗的能量,其单位与G相同,MPa·m
JIC:是材料的断裂韧度,表示材料抵抗裂纹开始扩展的能力,其单位与GIC相同。P90/P102
c:是材料的断裂韧度,表示材料阻止裂纹开始扩展的能力.P91/P104
J判据和判据一样都是裂纹开始扩展的裂纹判据,而不是裂纹失稳扩展的裂纹判据。P91/P104
3、试述低应力脆断的原因及防止方法。
答: 低应力脆断的原因:在材料的生产、机件的加工和使用过程中产生不可避免的宏观裂纹,从而使机件
在低于屈服应力的情况发生断裂。 预防措施:将断裂判据用于机件的设计上,在给定裂纹尺寸的情况下,确定机件允许的最大工作应力,或者当机件的工作应力确定后,根据断裂判据确定机件不发生脆性断裂时所允许的最大裂纹尺寸。
4、为什么研究裂纹扩展的力学条件时不用应力判据而用其它判据?
答:由4—1可知,裂纹前端的应力是一个变化复杂的多向应力,如用它直接建立裂纹扩展的应力判据,显得十分复杂和困难;而且当r→0时,不论外加平均应力如何小,裂纹尖端各应力分量均趋于无限大,构件就失去了承载能力,也就是说,只要构件一有裂纹就会破坏,这显然与实际情况不符。这说明经典的强度理论单纯用应力大小来判断受载的裂纹体是否破坏是不正确的。因此无法用应力判据处理这一问题。因此只能用其它判据来解决这一问题。
5、试述应力场强度因子的意义及典型裂纹K的表达式
答:新书P69旧书P80参看书中图(应力场强度因子的意义见上) 几种裂纹的K表达式,无限大板穿透裂纹:Kaaa;有限宽板穿透裂纹:Kaf();有限宽板单边直裂纹:Kaf()bb1.2a;受弯单边裂纹梁:K当ba时,K6Maf();无限大物体内部有椭圆片裂3/2(ba)b纹,远处受均匀拉伸:Kaa2(sin2cos2)1/4;无限大物体表面有半椭圆裂纹,远处均
c2受拉伸:A点的K1.1a。
6、试述K判据的意义及用途。
答: K判据解决了经典的强度理论不能解决存在宏观裂纹为什么会产生低应力脆断的原因。K判据将材料断裂韧度同机件的工作应力及裂纹尺寸的关系定量地联系起来,可直接用于设计计算,估算裂纹体的最大承载能力、允许的裂纹最大尺寸,以及用于正确选择机件材料、优化工艺等。P71/P83 7、试述裂纹尖端塑性区产生的原因及其影响因素。
答:机件上由于存在裂纹,在裂纹尖端处产生应力集中,当σy趋于材料的屈服应力时,在裂纹尖端处便开始屈服产生塑性变形,从而形成塑性区。
影响塑性区大小的因素有:裂纹在厚板中所处的位置,板中心处于平面应变状态,塑性区较小;板表面处于平面应力状态,塑性区较大。但是无论平面应力或平面应变,塑性区宽度总是与(KIC/σs)2成正比。
8、试述塑性区对KI的影响及KI的修正方法和结果。
由于裂纹尖端塑性区的存在将会降低裂纹体的刚度,相当于裂纹长度的增加,因而影响应力场和及KI的计算,所以要对KI进行修正。
最简单而适用的修正方法是在计算KI时采用“有效裂纹尺寸”,即以虚拟有效裂纹代替实际裂纹,然后用线弹性理论所得的公式进行计算。基本思路是:塑性区松弛弹性应力的作用于裂纹长度增加松弛弹性应力的作用是等同的,从而引入“有效长度”的概念,它实际包括裂纹长度和塑性区松弛应力的作用。
(4—15)的计算结果忽略了在塑性区内应变能释放率与弹性体应变能释放率的差别,因此,只是近似结果。当塑性区小时,或塑性区周围为广大的弹性去所包围时,这种结果还是很精确。但是当塑性区较大时,即属于大范围屈服或整体屈服时,这个结果是不适用的。 11 COD的意义:表示裂纹张开位移。表达式8salnsec()。P91/P103 E2s13、断裂韧度KIC与强度、塑性之间的关系:总的来说,断裂韧度随强度的升高而降低。详见新P80/P93 15、影响KIC的冶金因素:内因:1、学成分的影响;2、集体相结构和晶粒大小的影响;3、杂质及第二相的影响;4、显微组织的影响。外因:1、温度;2、应变速率。P81/P95
16.有一大型板件,材料的σ0.2=1200MPa,KIc=115MPa*m1/2,探伤发现有20mm长的横向穿透裂纹,若在平均轴向拉应力900MPa下工作,试计算KI及塑性区宽度R0,并判断该件是否安全? 解:由题意知穿透裂纹受到的应力为σ=900MPa
根据σ/σ0.2的值,确定裂纹断裂韧度KIC是否休要修正
因为σ/σ0.2=900/1200=0.75>0.7,所以裂纹断裂韧度KIC需要修正 对于无限板的中心穿透裂纹,修正后的KI为:
= KI (MPa*m1/2) 10.177(比较K1与KIc:
a/s)229000.0110.177(0.75)2168.131KI塑性区宽度为: =0.004417937(m)= 2.21(mm) R022s因为K1=168.13(MPa*m1/2) KIc=115(MPa*m1/2)
所以:K1>KIc ,裂纹会失稳扩展 , 所以该件不安全。
17.有一轴件平行轴向工作应力150MPa,使用中发现横向疲劳脆性正断,断口分析表明有25mm深度的表面半椭圆疲劳区,根据裂纹a/c可以确定φ=1,测试材料的σ0.2=720MPa ,试估算材料的断裂韧度KIC为多少?
解: 因为σ/σ0.2=150/720=0.208<0.7,所以裂纹断裂韧度KIC不需要修正 对于无限板的中心穿透裂纹,修正后的KI为: KIC=Yσcac1/2
对于表面半椭圆裂纹,Y=1.1
/φ=1.1
所以,KIC=Yσcac1/2=1.1
15025103=46.229(MPa*m1/2)
第五章 金属的疲劳
1.名词解释;
应力幅σa:σa=1/2(σmax-σmin) p95/p108 平均应力σm:σm=1/2(σmax+σmin) p95/p107 应力比r:r=σmin/σmax p95/p108
疲劳源:是疲劳裂纹萌生的策源地,一般在机件表面常和缺口,裂纹,刀痕,蚀坑相连。P96
疲劳贝纹线:是疲劳区的最大特征,一般认为它是由载荷变动引起的,是裂纹前沿线留下的弧状台阶痕迹。 P97/p110
疲劳条带:疲劳裂纹扩展的第二阶段的断口特征是具有略程弯曲并相互平行的沟槽花样,称为疲劳条带(疲劳辉纹,疲劳条纹) p113/p132
驻留滑移带:用电解抛光的方法很难将已产生的表面循环滑移带去除,当对式样重新循环加载时,则循环滑移带又会在原处再现,这种永留或再现的循环滑移带称为驻留滑移带。 P111
ΔK:材料的疲劳裂纹扩展速率不仅与应力水平有关,而且与当时的裂纹尺寸有关。ΔK是由应力范围Δσ和a复合为应力强度因子范围,ΔK=Kmax-Kmin=Yσmax√a-Yσmin√a=YΔσ√a. p105/p120 da/dN:疲劳裂纹扩展速率,即每循环一次裂纹扩展的距离。 P105
疲劳寿命:试样在交变循环应力或应变作用下直至发生破坏前所经受应力或应变的循环次数 p102/p117
过载损伤:金属在高于疲劳极限的应力水平下运转一定周次后,其疲劳极限或疲劳寿命减小,就造成了过载损伤。 P102/p117
2.揭示下列疲劳性能指标的意义
疲劳强度σ-1,σ-p,τ-1,σ-1N, P99,100,103/p114
σ-1: 对称应力循环作用下的弯曲疲劳极限;σ-p:对称拉压疲劳极限;τ-1:对称扭转疲劳极限;σ-1N:缺口试样在对称应力循环作用下的疲劳极限。 疲劳缺口敏感度qf P103/p118
金属材料在交变载荷作用下的缺口敏感性,常用疲劳缺口敏感度来评定。Qf=(Kf-1)/(kt-1).其中Kt为理论应力集中系数且大于一,Kf为疲劳缺口系数。 Kf=(σ-1)/(σ-1N) 过载损伤界 P102,103/p117
由实验测定,测出不同过载应力水平和相应的开始降低疲劳寿命的应力循环周次,得到不同试验点,连接各点便得到过载损伤界。 疲劳门槛值ΔKth P105/p120
在疲劳裂纹扩展速率曲线的Ⅰ区,当ΔK≤ΔKth时,da/aN=0,表示裂纹不扩展;只有当ΔK>ΔKth时,da/dN>0,疲劳裂纹才开始扩展。因此,ΔKth是疲劳裂纹不扩展的ΔK临界值,称为疲劳裂纹扩展门槛值。 3.试述金属疲劳断裂的特点 p96/p109
(1)疲劳是低应力循环延时断裂,机具有寿命的断裂 (2)疲劳是脆性断裂
(3)疲劳对缺陷(缺口,裂纹及组织缺陷)十分敏感
4.试述疲劳宏观断口的特征及其形成过程(新书P96~98及PPT,旧书P109~111) 答:典型疲劳断口具有三个形貌不同的区域—疲劳源、疲劳区及瞬断区。
(1) 疲劳源是疲劳裂纹萌生的策源地,疲劳源区的光亮度最大,因为这里在整个裂纹亚稳扩展过程中
断面不断摩擦挤压,故显示光亮平滑,另疲劳源的贝纹线细小。
(2) 疲劳区的疲劳裂纹亚稳扩展所形成的断口区域,是判断疲劳断裂的重要特征证据。特征是:断口
比较光滑并分布有贝纹线。断口光滑是疲劳源区域的延续,但其程度随裂纹向前扩展逐渐减弱。贝纹线是由载荷变动引起的,如机器运转时的开动与停歇,偶然过载引起的载荷变动,使裂纹前沿线留下了弧状台阶痕迹。
(3) 瞬断区是裂纹最后失稳快速扩展所形成的断口区域。其断口比疲劳区粗糙,脆性材料为结晶状断
口,韧性材料为纤维状断口。
6.试述疲劳图的意义、建立及用途。(新书P101~102,旧书P115~117)
答:定义:疲劳图是各种循环疲劳极限的集合图,也是疲劳曲线的另一种表达形式。
意义:很多机件或构件是在不对称循环载荷下工作的,因此还需知道材料的不对称循环疲劳极限,以适应这类机件的设计和选材的需要。通常是用工程作图法,由疲劳图求得各种不对称循环的疲劳极限。
1、am疲劳图
建立:这种图的纵坐标以a表示,横坐标以m表示。然后,以不同应力比r条件下将max表示的疲劳
极限r分解为a和m,并在该坐标系中作ABC曲线,即为am疲劳图。其几何关系为:
1a2(maxmin)1rtan1m(maxmin)1r2
(用途):我们知道应力比r,将其代入试中,即可求得tan和,而后从坐标原点O引直线,令其与横坐标的夹角等于值,该直线与曲线ABC相交的交点B便是所求的点,其纵、横坐标之和,即为相应r的疲劳极限rB,rBaBmB。
2、max(min)m疲劳图
建立:这种图的纵坐标以max或min表示,横坐标以m表示。然后将不同应力比r下的疲劳极限,分别以
max(min)和
m表示于上述坐标系中,就形成这种疲劳图。几何关系为:
tanmax2max2 mmaxmin1r(用途):我们只要知道应力比r,就可代入上试求得tan和,而后从坐标原点O引一直线OH,令其与横坐标的夹角等于,该直线与曲线AHC相交的交点H的纵坐标即为疲劳极限。 8.试述影响疲劳裂纹扩展速率的主要因素。(新书P107~109,旧书P123~125)
dac(K)n答:1、应力比r(或平均应力m)的影响:Forman提出:dN(1r)KcK残余压应力因会减小r,使
dadN降低和Kth升高,对疲劳寿命有利;而残余拉应力因会增大r,使
dadN升
高和Kth降低,对疲劳寿命不利。
2、过载峰的影响:偶然过载进入过载损伤区内,使材料受到损伤并降低疲劳寿命。但若过载适当,有时反而是有益的。
3、材料组织的影响:①晶粒大小:晶粒越粗大,其Kth值越高,
dadN越低,对疲劳寿命越有利。②组织:
钢的含碳量越低,铁素体含量越多时,其Kth值就越高。当钢的淬火组织中存在一定量的残余奥氏体和贝氏体等韧性组织时,可以提高钢的Kth,降低
dadN。③喷丸处理:喷丸强化也能提高Kth。
9.试述疲劳微观断口的主要特征。(新书P113~P114,旧书P132)
答:断口特征是具有略呈弯曲并相互平行的沟槽花样,称疲劳条带(疲劳条纹、疲劳辉纹)。疲劳条带是疲劳断口最典型的微观特征。滑移系多的面心立方金属,其疲劳条带明显;滑移系少或组织复杂的金属,其疲劳条带短窄而紊乱。
疲劳裂纹扩展的塑性钝化模型(Laird模型): 图中(a),在交变应力为零时裂纹闭合。
图(b),受拉应力时,裂纹张开,在裂纹尖端沿最大切应力方向产生滑移。
图(c),裂纹张开至最大,塑性变形区扩大,裂纹尖端张开呈半圆形,裂纹停止扩展。由于塑性变形裂纹尖端的应力集中减小,裂纹停止扩展的过程称为“塑性钝化”。
图(d),当应力变为压缩应力时,滑移方向也改变了,裂纹尖端被压弯成“耳状”切口。 图(e),到压缩应力为最大值时,裂纹完全闭合,裂纹尖端又由钝变锐,形成一对尖角。
12.试述金属表面强化对疲劳强度的影响。(新书P117~P118,旧书P135~P136)
答:表面强化处理可在机件表面产生有利的残余压应力,同时还能提高机件表面的强度和硬度。这两方面的作用都能提高疲劳强度。
表面强化方法,通常有表面喷丸、滚压、表面淬火及表面化学热处理等。 (1) 表面喷丸及滚压
喷丸是用压缩空气将坚硬的小弹丸高速喷打向机件表面,使机件表面产生局部形变硬化;同时因塑变层周围的弹性约束,又在塑变层内产生残余压应力。
表面滚压和喷丸的作用相似,只是其压应力层深度较大,很适于大工件;而且表面粗糙度低,强化效果更好。
(2) 表面热处理及化学热处理
他们除能使机件获得表硬心韧的综合力学性能外,还可以利用表面组织相变及组织应力、热应力变化,使机件表面层获得高强度和残余压应力,更有效地提高机件疲劳强度和疲劳寿命。
13.试述金属的硬化与软化现象及产生条件。
金属材料在恒定应变范围循环作用下,随循环周次增加其应力不断增加,即为循环硬化。 金属材料在恒定应变范围循环作用下,随循环周次增加其应力逐渐减小,即为循环软化。 金属材料产生循环硬化与软化取决于材料的初始状态、结构特性以及应变幅和温度等。 循环硬化和软化与σb / σs有关: σb / σs>1.4,表现为循环硬化; σb / σs<1.2,表现为循环软化;
1.2<σb / σs<1.4,材料比较稳定,无明显循环硬化和软化现象。 也可用应变硬化指数n来判断循环应变对材料的影响,n<1软化,n>1硬化。
退火状态的塑性材料往往表现为循环硬化,加工硬化的材料表现为循环软化。 循环硬化和软化与位错的运动有关:
退火软金属中,位错产生交互作用,运动阻力增大而硬化。
冷加工后的金属中,有位错缠结,在循环应力下破坏,阻力变小而软化。
第六章 金属的应力腐蚀和氢脆断裂
一、名词解释
1、应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后所产生的 低应力脆断现象。
2、氢脆:由于氢和应力共同作用而导致的金属材料产生脆性断裂的现象。
3、白点:当钢中含有过量的氢时,随着温度降低氢在钢中的溶解度减小。如果过饱和的氢未能扩散逸出,便聚集在某些缺陷处而形成氢分子。此时,氢的体积发生急剧膨胀,内压力很大足以将金属局部撕裂,而形成微裂纹。
4、氢化物致脆:对于ⅣB 或ⅤB 族金属,由于它们与氢有较大的亲和力,极易生成脆性氢化物,是金属脆化,这种现象称氢化物致脆。
5、氢致延滞断裂:这种由于氢的作用而产生的延滞断裂现象称为氢致延滞断裂。 二、说明下列力学性能指标的意义
(1)σssc:表征材料不发生应力腐蚀的临界应力。 (2)KⅠssc:应力腐蚀临界应力场强度因子。 (3)KⅠHEC;氢脆临界应力场强度因子。 (4)da/dt:应力腐蚀裂纹扩展速率。 3、试述金属产生应力腐蚀的条件及机理。
答:金属产生应力腐蚀的条件是应力、化学介质和金属材料。
金属产生应力腐蚀产生的机理:主要介绍以阳极溶解为基础的钝化膜破坏理论。对应力腐蚀敏感的合金在特定的化学介质中,首先在表面形成一层钝化膜,使金属不致进一步受到腐蚀,即处于钝化状态,因此,在没有应力的作用下,金属不会发生腐蚀破坏。若有拉应力作用,则可使局部地区的钝化膜破裂,显露出新鲜的表面。这个新鲜的表面在电解质溶液中成为阳极,其余具有钝化膜的金属表面成为阴极,从而形成腐蚀微电池。阳极金属变成正离子进入电解质中而产生阳极溶解,于是在金属表面形成蚀坑。拉应力除促使局部地区钝化膜破坏外,更主要的是在蚀坑或原有裂纹的尖端形成应力集中,使阳极电位降低,加速阳极金属的溶解。如果裂纹尖端的应力集中始终存在,那么微电池便不断进行,钝化膜不能恢复,裂纹将逐步纵深扩展。
4、分析应力腐蚀裂纹扩展速率da/dt与KⅠ关系曲线,并与疲劳裂纹扩展速率曲线进行比较。
5、某高强度钢的σ0.2= 1400MPa,在水的介质中的KⅠssc=21.3MPa·m,裂纹扩展到第二阶段的da/dt=2×10mm/s,第二阶段结束时的KⅠ=62MPa·m,该材料制成的机件在水介质中工作,工作拉应力σ=400MPa。探伤发现该机件表面有半径a0=4mm的半圆形裂纹。试粗略估算其剩余寿命。
6、何为氢致延滞性断裂?为什么高强度钢的氢致延滞断裂是在一定的应变速率下和一定的温度范围内出
-6
1/2
1/2
现?
答:氢致延滞断裂:高强度钢或α+β钛合金中,含有适量的处于固溶状态的氢(原来存在的或从环境介质中吸收的),在低于屈服强度的应力持续作用下,经过一段孕育期后,在金属内部,特别是在三向拉应力区形成裂纹,裂纹逐步扩展,最后突然发生脆性断裂。这种由于氢的作用而产生的延滞断裂现象称为氢致延滞断裂。因为当应变率较低时,若试验温度过低,氢的扩散速率很慢,永远跟不上位错的运动。因此不能形成氢气团,氢也难以聚集,就不会出现氢脆,当温度变大一些,氢的扩散速率与位错运动速率逐步适应,于是塑性开始降低。当温度升到更大的时候,两者运动速率完全吻合,此时塑性最差,对氢脆最敏感。温度再升高时,一方面形成氢气团,同时由于热作用,又促进已聚集的氢原子离开气团向四周均匀扩散,降低了气团对位错的“钉扎”作用,并减少氢偏聚的尝试于是金属的塑性开始上升。当温度更大时,氢气团完全被扩散破坏,氢脆现象完全消除。应变速率对氢脆敏感性的影响也是如此。所以高强度钢的氢致延滞断裂是在一定的应变速率下和一定的温度范围内出现。 7、试述区别高强度钢的应力腐蚀与氢致延滞断裂的认识方法。
答:可采用极化试验方法,即利用外加电流对静载下产生裂纹时或裂纹扩展速率的影响来判断。当外加小的阳极电流而缩短产生裂纹时间的是应力腐蚀;当外加小的阴极电流而缩短产生裂纹时间的是氢致延滞断裂。对于一个已断裂的机件来说,还可从断口形貌上来加以区分。(具体见书P168)。 8.如何识别氢脆与应力腐蚀?。
答:氢脆和应力腐蚀相比,其特点表现在:
1、实验室中识别氢脆与应力腐蚀的一种办法是,当施加一小的阳极电流,如使开裂加速,则为应力腐蚀;而当施加一小的阴极电流,使开裂加速者则为氢脆。
2、在强度较低的材料中,或者虽为高强度材料但受力不大,存在的残余拉应力也较小这时其断裂源都不在表面,而是在表面以下的某一深度,此处三向拉应力最大,氢浓集在这里造成断裂。 3、氢脆断裂的主裂纹没有分枝的悄况.这和应力腐蚀的裂纹是截然不同的。 4、氦脆断口上一般没有腐蚀产物或者其量极微。
5、大多数的氢脆断裂(氢化物的氢脆除外),都表现出对温度和形变速率有强烈的依赖关系。氢脆只在一定的温度范围内出现,出现氢脆的温度区间决定于合金的化学成分和形变速率。
第七章 金属的磨损与耐磨性
1.名词解释
(1)磨损:机械表面相接触并作相对运动时,表面逐渐有微小颗粒分离出来形成磨屑,使表面材料逐渐损失、造成表面损伤的现象。
(2)粘着:实际上就是原子间的键合作用。 (3)磨屑:松散的尺寸与形状均不相同的碎屑。
(4)跑合:在稳定磨损阶段前,摩擦副双方表面逐渐被磨平,实际接触面积增大的过程。
(5)咬死:在粘着磨损的过程中,常在较软一方本体内产生剪断,其碎片则转较硬一方的表面上,软方金属在硬方表面逐步积累最终使不同金属的摩擦副滑动成为相同金属间的滑动,故磨损量较大,表面较粗糙,
发生卡死的现象。
(6)犁皱:韧性金属材料在磨粒磨损后表面的形貌。 (7)耐磨性:材料抵抗磨损的性能。
(8)接触疲劳:机件两接触而作滚动或滚动加滑动摩擦时,在交变接触压应力长期作用下,材料表面因疲劳损伤,导致局部区域产生小片或小块状金属剥落而使物质损失的现象,又称表面疲劳磨损或疲劳磨损。 2、试比较三类磨粒磨损的异同,并讨论加工硬化对它们的影响。
答:(1)低应力划伤式的磨料磨损,它的特点是磨料作用于零件表面的应力不超过磨料的压溃强度,材料表面被轻微划伤。生产中的犁伴,及煤矿机械中的刮板输送机油楷磨损情况就是屑于这种类型。(2)高应力辗碎式的磨料磨损,其特点是磨料与零件表面接触处的最大压应力大于磨料的压溃强度。生产中球磨机村板与磨球,破碎式滚筒的磨损便是属于这种类型。(3)凿削式磨料磨损,其特点是磨料对材料表面有大的冲击力,从材料表面凿下较大颗料的磨屑,如挖掘机斗齿及领式破碎机的齿板。3、试述粘着磨损产生的条件、机理及其防止措施。
加工硬化对金属材料抗磨粒磨损能力的影响,因磨损类型不同而异。在低应力擦伤性磨粒磨损时,加工硬化对材料的耐磨性没有影响,这是由于磨粒或硬的凸出部分切削金属时,局部区域产生急剧加工硬化,比预先加工硬化要剧烈得多所致。但在高应力碾碎性磨粒磨损时,加工硬化能显著提高耐磨性,因为此时磨损过程不同于低应力下的情况,表面金属材料主要是通过疲劳破坏而不是切削作用去除的。 3、试述粘着磨损产生的条件、机理及其防止措施。
答:粘着磨损又称为咬合磨损,在滑动摩擦条件下,摩擦副相对滑动速度较小,因缺乏润滑油,摩擦副表面无氧化膜,且单位法向载荷很大,以致接触应力超过实际接触点处屈服强度而产生的一种磨损。 磨损机理:
实际接触点局部应力引起塑性变形,使两接触面的原子产生粘着。 粘着点从软的一方被剪断转移到硬的一方金属表面,随后脱落形成磨屑
旧的粘着点剪断后,新的粘着点产生,随后也被剪断、转移。如此重复,形成磨损过程。 改善粘着磨损耐磨性的措施 1.选择合适的摩擦副配对材料
2.采用表面化学热处理改变材料表面状态 3.控制摩擦滑动速度和接触压力
4、滑动速度和接触压力对磨损量有什么影响?
答:滑动速度和接触压力越大,磨损量会越大(具体见有关书籍)。 5、比较粘着磨损、磨粒磨损和微动磨损摩擦面的形貌特征。
答:三者相比,磨粒磨损的特征最明显;磨粒磨损面的形貌特征主要是摩擦面上有明显犁皱形成的沟槽;(具体见有关书籍)
6、试比较接触疲劳和普通机械疲劳的异同。
答:接触疲劳是工件(如齿轮、滚动轴承,钢轨和轮箍,凿岩机活塞和钎尾的打击端部等)表面在接触压应力的长期不断反复作用下引起的一种表面疲劳破坏现象,表现为接触表面出现许多针状或痘状的凹坑,称为麻点,也叫点蚀或麻点磨损;而普通机械疲劳指的是在交变应力作用下的损坏。 7、列表说明金属接触疲劳三种破坏形式的机理和特征。`
机理 麻点剥落 在滚动接触过程中,由于表面最大综合切应力反复作用,在表层局部区域,如材料的抗剪屈服强度较低,则将在该处产生塑性变形,同时必伴有形变强化。 特征 表面接触应力较小,摩擦力较大或表面质量较差时易产生。 出现在表面粗糙度低,纯滚动或相对滑动小、接近纯滚动的场合。 表面硬化机件强度太低,硬化层深不合理,梯度太陡或过渡区存在不利的应力分布都易造成深层剥落。 浅层剥落 在接触应力反复作用下,塑性变形反复进行,使材料局部弱化,遂在该处形成裂纹, 深层剥落 深层剥落的初始裂纹常在表面硬化机件的过渡区内产生,该处切应力虽不最大,但因过渡区是弱区,切应力可能高于材料强度而在该处产生裂纹。 8、试从提高疲劳强度、接触疲劳强度、耐磨性的观点,分析化学热处理时应注意的事项。
答:对工件进行相应化学热处理,可以提高工件的疲劳强度、接触疲劳强度、耐磨性,但是在进行化学热处理时,应注意:选择合适的化学热处理;要有一定的渗层梯度;等等;(具体见有关书籍)
第八章 金属高温力学性能
1、解释下列的名词:
(1)等强温度:晶粒与晶界两者强度相等的温度。 (2)约比温度:表征试验温度与金属熔点之间的比值。
(3)蠕变:金属在长时间的恒温、恒载作用下缓慢产生塑性变形的现象。 (4)稳态蠕变:蠕变速度几乎保持不变的现象。
(5)扩散蠕变:在高温条件下,大量原子和空位定向移动造成的蠕变现象。 (6)持久伸长率:在高温持久试验后,试样断裂后的伸长率。 (7)蠕变脆性:材料在高温下发生蠕变后,塑性下降的现象; (8)松弛稳定性:金属材料抵抗应力松弛的性能。
2、说明下列力学性能指标的意义:
(1):表征在规定温度下,使试样产生规定稳态蠕变速率的最大应力。
(2)/:表征在规定温度下和在规定的试验时间内,使试样产生一定蠕变总伸长率的最大应力。 (3):表征金属材料的持久强度极限。
(4)sh:表征应力松弛试验中,任一时间试样上所保持的应力。
3、试说明高温下金属蠕变变形的机理与常温下金属塑性变形的机理有何不同?
答:高温下金属蠕变变形的机理是通过位错滑移、原子扩散引起的;而金属塑性变形主要是由滑移和孪生引起的。(具体见有关资料)
4、试说明金属蠕变断裂的裂纹形成机理与常温下金属断裂的裂纹形成机理有何不同?
答:金属蠕变断裂的裂纹形成机理有两种方式:在三晶粒交会处形成楔形裂纹;在晶界上由空洞形成晶界裂纹。常温下金属断裂的裂纹形成机理有很多,如:位错塞积理论、柯垂耳位错反应理论、微孔聚集长大等方式。
6、试分析晶粒大小对金属材料高温力学性能的影响。
答:当使用温度低于等强温度时,细晶粒钢有较高的强度;当使用温度高于等强温度时,粗晶粒钢及合金有较高的野蛮极限和持久强度极限。但是晶粒太大会降低高温下的塑性和韧性。对于耐热钢及合金来说,随合金万分及工作条件不同有一最佳晶粒度范围。
7、某些用于高温的沉淀强化镍基合金,不仅有晶内沉淀,还有晶界沉淀。晶界沉淀相是一种硬质金属间化合物,它对这类合金的抗蠕变性能有何贡献?
答:晶界沉淀相能够强化晶界,它可以强烈的阻止位错的滑移,所以能大幅度提高材料的抗蠕变性能。
ttt
因篇幅问题不能全部显示,请点此查看更多更全内容