FERMILAB-Pub-01/295-Thep-ph/0110218
Topquarkassociatedproductionoftopcolorpionsathadroncolliders
AdamK.LeibovichandDavidRainwater
TheoryDept.,FermiNationalAcceleratorLaboratory,Batavia,IL,USA
arXiv:hep-ph/0110218v2 23 Oct 2001Abstract
Weinvestigatetheassociatedproductionofaneutralphysicalpionwithtopquarksinthecontextoftopcolorassistedtechnicolor.Wefindthatsingle-topassociated
¯-associatedproductiondoesnotyieldviableratesateithertheTevatronorLHC.tt
¯H,butattheproductionattheTevatronissuppressedrelativetoStandardModeltt
LHCisstronglyenhancedandwouldallowforeasyobservationofthemaindecaychannelstobottomquarks,andpossibleobservationofthedecaytogluons.
I.INTRODUCTION
Hadroncollidersaremachinesextremelywell-suitedtostudytheforefrontproblemofelectroweaksymmetrybreaking(EWSB)andfermionmassgeneration.Fermilab’sTevatron,nowengagedinRunII,hassignificantpotentialtodiscoveralightStandardModel(SM)orMinimalSupersymmetric
<130GeV[1].However,itwillStandardModel(MSSM)Higgsboson,withmassuptoaboutMH∼
haveverylittlecapabilitytodeterminetheoverarchingmodelthatgovernsEWSBifaHiggscandidateisobserved.TheCERNLargeHadronCollider(LHC),ontheotherhand,willhaveconsiderablyexpandedcapabilitytodiscoverandmeasurealmostallthequantumpropertiesofaSMHiggsofanymassorseveraloftheMSSMHiggsbosonsovertheentireMSSMparameterspace[2–6].WhilethisiscertainlyverypromisingforfuturestudiesofEWSB,verylittleattentionhasbeengivenrecentlytonon-SM/MSSMtheoriesofgaugebosonandfermionmassgeneration.
OfparticularconcerntousarethemoremoderndynamicalmodelsofEWSB.Whiledynamicalmodelshavehistoricallyhadmanytheoreticalproblemsaswellasconflictswithdata,andbroadclasseshavebeenruledout,therearestillviablemodelsworthyofinvestigationinlightofthecapabilitiesofthecurrentgenerationofexperiments.Weaddressherethetheoryoftopcolorassistedtechnicolor(TC2)[7],specificallytypeI[8].Thismodelisstillconsistentwithexperiment[9].WefirstoutlinethemodelinSec.II,discussthephenomenologyofthemodelinSec.III,andthenpresentconclusionsandtheoutlookforupcomingexperiments.DetailsofsomeoftheanalyticalcalculationsarepresentedintheAppendices.
1
II.THETOPCOLORASSISTEDTECHNICOLORMODEL
Dynamicaltheoriesoffermionmassgeneration,themostviableofwhichisextendedtechnicolor(ETC),typicallyhavedifficultyaccommodatingthelargetopquarkmass.TC2wasproposedtoassuagethisproblem,byhavingtwoseparatestronglyinteractingsectors.One(topcolor,orTC)providesforthelargetopquarkmassbuthascomparativelylittlecontributiontoEWSB,whiletheother(ETC)isresponsibleforthebulkofEWSBbutcontributesalmostnothingtomt.DetailsofTC2maybefoundinRef.[7].Here,webrieflyreviewthecharacteristicsmostrelevantfordiscussionofitsphenomenology.
TopcolorgaugeinteractionscausetopquarkpaircondensationatsomescaleΛviaastrongfour-fermioninteraction
g2
2
0
,(2)
wherefπisthevacuumexpectationvalue(vev)ofthetopquarkpaircondensate,andτarethePaulimatrices.NotethatthehyperchargeofΦis−1.TypeItopcolorcontainsanextraU(1)whichtiltsthefermioninteractiontodisallowcondensationofab¯bcondensateaswell.Asimilarcondensation¯LTR>oftechnifermionsoccursintheETCsector,withitsownvevvT,andonemaywritethe ThePagels-Stokarformula[10]givesthevalueofthevevfπintermsofthenumberoftopcolors,thetopquarkmass,andthescaleatwhichthecondensationoccurs: 2fπ≃ Nc m2t +K, (3) whereKisaconstantoforder1.ForcondensationaroundtheEWSBscaleof1TeV,fπ≃60GeV, butitshouldbeunderstoodthatthisisonlyaroughguide,andfπmayinfactbesomewhatlowerorhigher,sayintherange40−80GeV.Allowingfπtovaryoverthisrangedoesnotqualitativelychangeourconclusionsandhasonlyminimalimpactonourquantitativeresults.Therefore,weusethevaluefπ=60Gevthroughoutouranalysisasaconvenientbaseline. Welinearizethetheoryandrearrangethepionsintwoorthogonallinearcombinationstoformthelongitudinaldegreesoffreedomoftheweakgaugebosonsandatripletof“top-pions”,Π0,±,whichbecomephysicaldegreesoffreedom.(SeeAppendixAfordetails.)Thetop-pionsareanalogoustotheneutralCP-oddandchargedHiggsscalarsofatwo-Higgsdoubletmodel(2HDM),ofwhichtheMSSMHiggssectorisasubset.Contributionstothetopquarkmasscancomefrombothsectors,butthemodelassumesthatthedominantcontributionisfromTC.ThetopquarkYukawatermintheLagrangian,ignoringmixingbetweenthetwoHiggsmodes,iswrittenas 2 LYuk,t 1¯t=−Ytfπ+ǫtvTt21¯t−YtHTC+ǫtHETCt2i¯γ5t.YtvT−ǫtfπΠ0t−2 (4) whereYtistheTCYukawacoupling,andǫtisasmallETCcontribution.Oncefπisfixed,vTis 22 uniquelydeterminedbytheEWSBrequirementthatfπ+vT=v2≃(246GeV)2.Forfπ=60GeV,wemusthavevT=239GeV.ThemeasuredtopmassthenfixesYttobeoforder3-4forsmallǫt.ThemaximalvalueofYtisYt,max=4.1occurswhenǫt=0.Weneglecttheeffectsofflavor-changing ¯c.Ithasbeenneutralcurrents(FCNCs),inparticularthoseinducedbyLagrangiantermslikeUtcΠ0t arguedpreviously[7,11]thatthesetermscouldbelargeandleadtoasignificantbranchingratioforΠ0→tc.WewilladdressthisagaininSec.III. ThetwoCP-evenHiggsmodesinthiseffective2HDM,labeledHTCandHETC,areknownasthe“top-Higgs”andthe“techni-Higgs”,respectively.TheirmassescanbeestimatedintheNambu–Jona–Lasinio(NJL)modelinthelarge-Ncapproximation.Forthetop-HiggsthisisfoundtobeontheorderofMH≃2mt;forthetechni-Higgsitismuchhigher.However,thereisnoreasontoexpecttheNJLmodeltobecorrect,itonlyservesasaroughguide;themassesofthetop-andtechni-Higgsmodesmayinfactbeverylight.Thetop-pionsontheotherhandhavemassesproportionaltoǫtandthemassofthecoloroctetofTCgaugebosons,MB.Inthefermionbubbleapproximationthisis 2MΠ = 2 Ncǫtm2tMB 8π2 ∼6.6kGeV.(6) Togetalimitonk,weuseabottomquarkpolemassofmb≈4.8GeV,sothattheentirebquark masswouldcomefromcontributionduetotopcolorinstantonsfork∼0.73.SinceEq.6isonlyaroughestimatewewillusek=0.8asthemaximumpossiblevalueinouranalysis.TheremainingmBcontributionisassumedtocomefromETC,viaaYukawacouplingǫb.TheLagrangiantermsfortheETCbottomYukawaandinstantonsectorsare ǫbvT¯+LYuk,b=−m∗bbb 2√i−vT−ǫbfπΠ0¯bγ5b. fπ2 (7) Forfixedfπ,thiscouplingdependsonlyonk(ǫbisrelatedtokbymb),andhasazeroatk=0.043. Suchasmallnon-zerovalueseemsextraordinarilyfine-tunedsowedonotconsideritasaspecial 3 casefurther.AmoreinterestingspecialcaseiswhereETChasflavoruniversalYukawacouplings, >4(recalli.e.ǫb=ǫt.ThiscanoccuronlyforverylargevaluesofthetopcolorYukawacoupling,Yt∼ forourfixedvalueoffπ,Yt,max∼4.1).Atthelowerlimitofthisbound,k=0andthereisnotopcolorinstanton-inducedbquarkmass. III.PHENOMENOLOGYOFTHEMODEL OneimmediatelycanseefromEq.4thatthecouplingsofboththetop-Higgsmodeandthetop-piontotopquarksareenhancedbyafactorofseveral(YtTC/YtSM≃3−5forthetop-Higgsand(YtTCvT−ǫtfπ)/vYtSM≃3−4forthetop-pion)relativetotheSM.Asaresult,thesestateshaveagreatlyenhancedtopquarkloop-inducedcouplingtogluons.Inclusiveproduction,gg→Π0,thusoccursatamuchgreaterratethanintheSM.Thislatterfeaturehasbeenaddressedpreviouslyintheliterature,brieflyinRef.[13]andinmoredetailinRef.[11],andwedonotdiscussithere.Furthermore,wewillnotdiscusseitherthetop-Higgsorthetechni-Higgsinthispaper,leavingthemforfutureanalysis[14].Instead,weconcentrateourinvestigationtheneutraltop-pion,whichhasnotbeenexaminedverycloselyinpreviousstudies. AstheΠ0isaCP-oddstate,itdoesnotcoupletoweakbosonsattreelevel.Thislimitstheproductionmodesatahadroncollider,aswellasthepossibledecaymodes.Wethereforefocuson ¯-associatedproduction,andcomparetheTC2ratestocorrespondingratesinbothsingle-top-andtt 0 theSMandallowedregionsoftheMSSM.WealsoconfineourfocustothemassregionMΠ<2mt.Formassesabovethetopquarkpairthreshold,decaystotopquarksdominate,resultinginaratherlargefourtopquarkcrosssectionthatmaybeexperimentallyobservable,asdiscussedinRef.[15].Allourcalculationsareperformedwithparton-levelMonteCarlousingCTEQ4Lpartondistribu-tionfunctions[16]andαs(MZ)=0.1185.Boththefactorizationandrenormalizationscalesarechosenasµf,r=mt+1 Figure1.Totalwidth(left)anddominantbranchingratios(right)oftheneutraltop-pion,asafunctionofkforfixedYt=4.0.Shownarethecurvesforkis0.8(solid),0.4(dashed)and0(dot-dashed).TheSMHiggstotalwidthisshownbythedottedlineintheleftpanel.Intherightpanel,BR(b¯b)areinblue(downwardsloping),andBR(gg)areingreen(upwardsloping).TheΠ0–quarkinteractionsareassumedtobeflavordiagonal(seetext). quicklybecomesnegligible.Ifinsteadk=kmax∼0.8,evenatMΠ0=100GeVthebranchingratiotogluonsisabout5%,thesmallestitevergets.Forlargertop-pionmassesormoremoderatevaluesofk,thereistypicallyaratherlargebranchingratiotogluons.Wewilllaterplaceroughlimitsonwhatweexpectσ·BRtobeforeachdecaymodeasafunctionofYtandk. ForMΠ0>2mt,thetop-piontotalwidthexceedstheSMHiggstotalwidthbyafactor3-5,dependingonthechoiceofYt.Inthisregion,decaystotopquarkpairsdominatethewidthtosuchadegreethattheirbranchingratioiseffectivelyunity;allotherdecaymodesmaybeignored.Singletopassociatedproduction Diagrams by MadGraph u d W+ Π0 Π− u d W t t Π0 graph 2 b graph 1 t b Figure2.t-channelWsingletopassociatedΠ0production.AsintheMSSMthereisastrongcancellationbetweenthetwodiagrams,leadingtosmall,almostcertainlyunobservablerates. 5 √ ThelargestsingletopproductioncrosssectionattheTevatron( s=14TeV). OnemayeasilyestimatethatateithertheTevatronorLHC,evenifs-channelsingletopassociatedproductionofaneutraltop-pionisenhancedrelativetotheSMHiggsrateby∼32,anorderofmagnitude,thisisnotenoughtobeobserved[18].t-channelproductionisadifferentstory.InthiscasethereisastrongcancellationintheSMbetweenthegraphswheretheHiggsisradiatedoffthet-channelWbosonoroffthefinalstatetopquark,whichpreservesunitarityathighenergies[18].Combinedwiththeratherlargebackgroundrates,thisrendersSMHiggssingletopassociatedproductionunobservableatboththeTevatronandLHC.EvenintheMSSMitisdifficulttoachieveasignificantenoughenhancementtohopeformuchimprovedprospects.ButinTC2,theneutraltop-pioncannotbeemittedfromthet-channelW,soonewouldna¨ıvelyexpectcancellationstobeabsentandtheratetobeconsiderablylarger.Unfortunately,thereisaW+Π−Π0vertex,asshowninFig.2,whichleadstoasimilarstrongcancellationbetweenthediagrams,againasrequiredbyunitarity(seeAppendixBfordetails).SinceattheLHCthetop-pionproductioncrosssectionisnevermorethanafactortwolargerthanfortheSMHiggs,webelievethischannelisnotusefulanddonotconsideritfurther.Topquarkpairassociatedproduction ¯Π0v.StandardModeltt¯HcrosssectionsattheTevatron(left)andLHC(right).TC2Figure3.Totaltt modelinputisfπ=60GeVandYt=3.0(solid),3.5(dashed),and4.0(dotdahsed).TheSMcrosssectionsareshownbythedottedcurves. ¯Π0productionastherearenocancellationsbetweendiagrams.Thesituationisverydifferentfortt ¯HThecrosssectionattheTevatron,shownintheleftpanelofFig.3,iscomparabletothatforSMtt <150GeV,varyingwithinafactorofseveralsmallertofewlarger.AtlargerproductionforMΠ0∼ >150GeV,theTCrateisalwayslarger,althoughthetotalrateisnotenoughtoΠ0masses,MΠ0∼ yieldenoughevents[19].Thattherateisonlycomparableratherthansignificantlylarger,asonewouldguessfromtherelativemagnitudeofthequark-quark-scalarcouplings,isduetoadifferentsort ¯Π0vertexcontainsaγ5,duetotheCP-oddnatureofthescalar,thereisofcancellation:sincethett destructiveinterferencebetweenthepin·poutandm2ttermsintheDiracstructureoftheamplitude.TheTevatronrunsatapartoniccenterofmassenergywherethetermsareofcomparablesize,sothe 6 overallcouplingenhancementof≈32isunfortunatelycountered;iftheγ5werenotpresent,thecrosssectionattheTevatronwouldbelargerbyanorderofmagnitude[14]. ¯HSMeventsattheTevatronwereinitiallybelievedtobegoodforProspectsforobservationoftt <135GeV[19],butrecentNLOcalculationsofpp¯HSMrevealedanunexpectedsuppressionMH∼¯→tt ratherthanenhancement[20],whichmakethesearchmuchmoredifficult.1ItisnotyetknownwhattheNLOresultisforpseudoscalarproductioninassociationwithtopquarkpairsathadroncolliders2,sowecannotmakedefinitivecommentsonthepotentialobservabilityofthischannel.Theslightly ¯Π0productionislikelytobemissedattheTevatron,lowercrosssectionsforlowΠ0masssuggestthattt atleastforsmalltomoderateYt,butthisshouldbeviewedasachallengetothemachineanddetectorgroups.ObservingorrulingoutTC2basedonitsneutralpseudoscalarcontentwillattheveryleastbeextremelydifficultattheTevatronunlessthemachineperformsexceedinglywell. AcompletelydifferentparadigmwillreignattheLHC.Fromrecentstudieswithdetectorsimula-¯H→ℓνjjb¯tion[22],itisknownthataSMHiggsofmassMH=120GeVcanbediscoveredinthettbb¯b channel.Thestudiesfoundthatthebackgroundscanbereducedtothelevelofthesignal,S/B∼1/1,yieldingastatisticalsignificanceofabout12σatCMSandabout10σatATLAS,for100fb−1ofdata.Bothstudiesusedthesampleconsistingofonetopquarkdecayinghadronicallyandtheother ¯Heventsample.leptonically,≈1/3ofthetotaltt ¯Π0;Π0→b¯WepredictthatanyttbratethatismorethanhalftheSMrateforthesameMφ willbeobservableatgreaterthan5σ.ExaminingtheleftpanelofFig.4,forMΠ0=120GeVthiscorrespondstoYt=3.0andverysmallk,closeto0(ignoringtheexactzeroatk≈0.05).ForlargerYt,thetop-pionsignalonlybecomesstronger,astheproductioncrosssectionincreasesfasterthanBR(b¯b)fallsoff.(ThisbehaviorholdsgenerallyforallΠ0masses.)Itismanifestthatanyregionof >300fbislikewiseaccessible.Infactthesituationismuchbetter,parameterspacewithσ·BR(b¯b)∼ ¯b¯sincethettbbackgroundfallsoffveryquicklywithincreasingmb¯b.However,wecannotmatchthe levelofsophisticationpresentedinRef.[22],andaparton-levelMonteCarlocalculationwouldbeamisleadingcomparison,soweleavethedetailsofreachinthischanneltofutureworkbydetectorcollaborations.Wedonote,however,thatfortheobviouslyverylargeregionofparameterspacewherestatisticalsignificancewouldbe≫5σ,themethodsofRef.[5]shouldalsoallowforconfirmationofthepseudoscalarnatureoftheresonance. ForlargermassesMΠ0,itmaybepossibletoobservethedecaymodeΠ0→ggoversomeregionofTC2parameterspace.Weknowofnoothermodelwherethisispossible.Toillustrateourclaim ¯+jjweexamineafewpointsinparameterspaceinTableI.HerewecalculatethesignalandQCDtt backgrounds[23]atpartonlevelwithfullmatrixelements,includingthedecayΠ0→gg.Weconsiderthefinalstatewhereonetopquarkdecayshadronicallyandtheotherdecaysleptonically,providingahardleptonfortriggering.Wedonotattempttoincludedetectoreffects,butwedoincludesomemajordetectorefficienciessuchasbjettagging(60%each)andleptonID(85%),whichreducesthecapturedratesconsiderably.Wealsoapplytheratherseverekinematiccutsneededtosatisfythe Figure4.Weshowthetop-pionproductioncrosssectionsforYt=3.0,multipliedbythebranchingratiostob¯b(left)andgg(right),forvariousvaluesofk:0.8(solid),0.2(dashed),0(dotdashed).TheSMHiggsratesareshownbythedottedlines. experimentalcriteriaforhighluminosityrunning: pT(j)>30GeV,pT(b)>30GeV,pT(l)>15GeV,p/T>50GeV, |η(j)|<4.5, |η(b)|<2.5,|η(l)|<2.5,△Rij>0.4. (8) Inaddition,werequireanadditionalcutpT>40(50)GeVonthejetsfromdecayoftheΠ0forMΠ0=200(300)GeV.AstheΠ0isanarrowstateevenatthehighermass,weexaminesignalv.backgroundina±20GeVbinaroundthecentralvalue.Duetothelackofdetaileddetectorsimulation,thiscomparisonshouldbetakenonlyasaroughguideforthereachavailableinthischannel.OurgoalistoshowthepotentialdistinctivecharacteristicsoftheTC2model. TableIrevealsthattheΠ0→ggdecaymodeisprobablyobservableonlyforlargeYtorverysmallk.Whilethenumberofbackgroundeventsisverylarge,S/BandtotalnumberofsignalandbackgroundeventsarequitesimilartotheSMgg→H→γγsearchattheLHC,whichhasbeenshowntobeaccessible[2].Ourestimatealsomakesnoattempttoutilizethecomplexnatureofthesefinalstates,whichhaselsewherebeenshowntoyieldsignificantimprovementsbeyondoursimpleapproach[22].TheTablesuggeststhatthismodemaybeabletoprovidediscoverycoverageoverregionsofparameterspacewheretheΠ0→b¯bmodeisnotaccessible. IfwenowdeviatefromourassumptionthattheΠ0–quarkinteractionsareflavordiagonal,forthe ¯ccanoccurwithsubstantial,evendominant¯,tΠ0massrangemt+mc ThereisnoSMprocessthatcangivethis,andtherateforpp→tttbattheLHCislessthan0.2fb;theb→cmistaggingprobabilitywouldreducethisevenfurther.Wewilladdresstheflavor-changingpossibilitiesseparately[14]anddonotdiscussthemfurtherhere. 8 MΠ0(GeV)200200200200300300300300σB(fb)680680680680290290290290NB62,40062,40062,40062,40026,60026,60026,60026,600 √NS/0.64.21.05.11.34.23.68.1 ¯Π0→b¯TABLEI.Crosssectionsforthetopcolorassistedtechnicolorsignalpp→ttblνjjgg(1leptonic √ ¯jj→→b¯and1hadronicdecayofthetopquarks)andbackgroundpp→ttblνjjjjattheLHC, determinableatahadroncollider.Butbyalsoobservinganotherproductionmodeinthesamedecaychannel,suchasgg→Π0→b¯b,onecangetaroundhavingtoknoweitherkorǫb.Whilethenumberofunknownsisreducedtofour,thenumberofmeasurementsisstilleffectivelythree.Thisleavesthesystemunderdetermined,sothatadditionalmeasurementswouldbenecessary,suchastherateofHTCproductiontimesBR(b¯b,gg)rateineithergluonfusionortopquarkassociatedproduction. ACKNOWLEDGMENTS WewanttothankChrisHillforhelpingustounderstandtopcolorassistedtechnicolorandGustavoBurdmanforusefuldiscussions.FermilabisoperatedbyURAunderDOEcontractNo.DE-AC02-76CH03000. APPENDIXA:THETC2LAGRANGIAN WebeginbywritingtheeffectiveTC2Lagrangianinlinearizedform.Thekinetictermis Lkin= DµΦTC † DµΦTC+DµΦETC † DµΦETC, (A1) wheretheSU(2)doubletsΦhavetheform ΦTC= (fπ+HTC+ 0iπTC)/ √ 2 −iπETC ,(A2b) andthecovariantderivativeis Dµ=∂µ+i gY 2 i τiWµ. (A3) ThehyperchargeofthedoubletsisY=−1,andgisgweak.Wemakethefollowingredefinitionof fields: 112 (Wµ∓iWµ),2 3Wµ=Zµcosθ+Aµsinθ,Bµ=−Zµsinθ+Aµcosθ. ±Wµ= (A4)(A5) (A6) Afterreplacementofthephysicalvectorbosonfields,theDµΦitermforeachdoubletwillbeoftheform DµΦi= 1 (∂µHi2 0 +i∂µπi)−i∂µπi + igZ √ √i 2 wheregZ=g/cosθWande=gsinθW.AfterexpandingthetermsinEq.A1,weformorthogonal 0,± linearcombinationsofthefieldsπi, w0,±= 0,±0,± fππT+vπTCETC v (physicaltop−pions),(A9) 22 wherev2=fπ+vT=(246GeV)2. AfterrearrangementtheFeynmanrulescansimplybereadoff.Atthispointwereversetheflowofallbosonsfromincomingtooutgoing,tomatchthetreatmentusedinMadgraph/HELAS.ThecoefficientofeachtermistheHELAScoupling.TableIIliststhe3-pointgaugecouplingsforallphysicalfields;theGoldstonebosonand4-pointcouplingsarenotlistedforbrevity. 11 H0−iv(pµ−pµ) +gZ(1−2sin2θW)(p−µ−pµ) +−iv(pHµ−pµ)++iv(pHµ−pµ) −1 11 ZµHETCΠ0AµΠ−Π+ W+µΠ−HTCW+µΠ−HETC 2 gZ fπ −1 g2g 2 vTfπ TABLEII.Madgraph/HELAS3-pointTC2gaugecouplingsforthephysicalfields;Goldstonebosonand4-pointcouplingsarenotlisted.Allbosons(chargeandmomentum)flowoutintheHELASconvention. UsingthesamescalarSU(2)doubletsinEq.A2,theYukawatermintheLagrangianiswrittenas †¯LΦTCtR+t¯LΦETCtR+t¯RΦ†¯LY=−YtΨΨ−ǫΨΦLtRTCETCΨL, (A10) whereΨListheSU(2)Ltop-bottomquarkdoubletasusual.Rearrangementofthepionfieldsresultsin theFeynmanrulesforthequarkYukawainteractionswiththetop-Higgs,techni-Higgsandtop-pions,showninTableIII. −12Yt−12ǫt +i2(YtvT−ǫtfπ)+i ¯LtRHTCt ¯LtRHETCt¯LtRΠ0t − √√v i√ TABLEIII.Madgraph/HELASYukawaquark-quark-scalarTC2couplings.YtisthelargetopcolortopquarkYukawa,andǫtistheETCYukawagivingasmallcontributiontothetopquarkmass.Allbosons(chargeandmomentum)flowoutintheHELASconvention. 11 APPENDIXB:SINGLE-TOPASSOCIATEDΠ0PRODUCTION ToexaminetheanalyticalbehaviorofsingletopassociatedΠ0productionathadroncolliderswewritetheamplitudesforthetwoFeynmangraphsinFig.2intheeffective-WapproximationasinRefs.[18,24]: u¯t i 2 (pt−pb)2−MΠ gg (pb+k)2−m2t 2 v √ γµ(1−γ5)ubǫµ. (B2) Thesamecouplingsappearinbothdiagrams.Usingthehighenergylimitǫµ=kµ/MW+O(MW/k0), thefirsttermreducescompletelytothecouplingscoefficientandasimpleDiracstructure, − ig (pb+k)2−m2t u¯tp/Π(1−γ5)ub. (B4) ThefirsttermofEq.B4cancelsthecontributionfromthefirstgraphinEq.B3,leavingatermthat satisfiestheunitarityconstraintathighenergy[18,24]. 12 Bibliography [1]M.Carenaetal.,“ReportoftheTevatronHiggsworkinggroup,”hep-ph/0010338.[2]CMSTechnicalProposal,reportCERN/LHCC/94-38(1994); ATLASCollaboration,ATLASTDR,reportCERN/LHCC/99-15(1999). [3]D.Zeppenfeld,R.Kinnunen,A.NikitenkoandE.Richter-Was,Phys.Rev.D62,013009(2000).[4]J.G.Bransonetal.[TheCMSCollaboration],hep-ph/0110021.[5]J.F.GunionandX.G.He,Phys.Rev.Lett.76,4468(1996).[6]T.Plehn,D.RainwaterandD.Zeppenfeld,hep-ph/0105325.[7]C.T.Hill,Phys.Lett.B345,483(1995). [8]G.Buchalla,G.Burdman,C.T.HillandD.Kominis,Phys.Rev.D53,5185(1996).[9]C.T.Hill,privatecommunication. [10]H.PagelsandS.Stokar,Phys.Rev.D20,2947(1979).[11]G.Burdman,Phys.Rev.Lett.83,2888(1999). [12]G.BurdmanandD.Kominis,Phys.Lett.B403,101(1997); W.LoinazandT.Takeuchi,Phys.Rev.D60,015005(1999)[13]G.Burdman,hep-ph/9611265. [14]A.LeibovichandD.Rainwater,inpreparation. [15]M.SpiraandJ.D.Wells,Nucl.Phys.B523,3(1998).[16]H.L.Laietal.,Phys.Rev.D55,1280(1997). [17]T.StelzerandW.F.Long,Comp.Phys.Comm.81,357(1994).[18]F.Maltoni,K.Paul,T.StelzerandS.Willenbrock,hep-ph/0106293. [19]J.Goldstein,C.S.Hill,J.Incandela,S.Parke,D.RainwaterandD.Stuart, Phys.Rev.Lett.86,1694(2001). [20]L.ReinaandS.Dawson,hep-ph/0107101;W.Beenakkeretal.hep-ph/0107081.[21]M.Spira,Fortsch.Phys.46,203(1998). [22]D.Green,K.Maeshima,R.VidalandW.Wu,CMS-NOTE-2001/039; V.Drollinger,hep-ex/0105017.[23]A.Stange,privatecommunication. [24]G.BordesandB.vanEijk,Phys.Lett.B299,315(1993). 13 因篇幅问题不能全部显示,请点此查看更多更全内容